4.4 Article

CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes

期刊

INFECTION AND IMMUNITY
卷 78, 期 1, 页码 241-252

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.00746-09

关键词

-

资金

  1. National Institutes of Health [AI070759]
  2. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI070759] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Production of H2O2 follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H2O2 generation and its regulation. Deletion of the gene encoding lactate oxidase (lctO) or culture in the presence of glucose eliminated H2O2 production, implicating carbohydrate regulation of lctO as a key element of growth phase control. In examining known carbohydrate-responsive regulators, deletion of the gene encoding CcpA but not that encoding LacD.1 resulted in both derepression and an uncoupling of lctO transcription from its growth phase pattern. Expanding this analysis to additional virulence factors demonstrated both negative (cfa, encoding CAMP factor) and positive ( speB, encoding a cysteine protease) regulation by CcpA and that CcpA mutants were highly cytotoxic for cultured macrophages. This latter property resulted from enhanced transcription of the streptolysin S biogenesis operon. Examination of CcpA-promoter interactions using a DNA pull-down assay mimicking physiological conditions showed direct binding to the promoters of lctO and speB but not those of sagA. CcpA but not LacD.1 mutants were attenuated in a murine model of soft-tissue infection, and analysis of gene expression in infected tissue indicated that CcpA mutants had altered expression of lctO, cfa, and speB but not the indirectly regulated sagA gene. Taken together, these data show that CcpA regulates virulence genes via at least three distinct mechanisms and that disruption of growth phase regulation alters transcriptional patterns in infected tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据