4.7 Article

Novel poly(alkyd-urethane)s from vegetable oils: Synthesis and properties

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 52, 期 -, 页码 74-84

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2013.10.002

关键词

Alkyd; Urethane; Palm oil; Characterization; Performance

资金

  1. Universiti Sains Malaysia [304/PTEKIND/6311031]

向作者/读者索取更多资源

Triglycerides of palm (Elaeis guineensis) oil, soy (Glycine max) oil and sunflower (Helianthus annuus) oil were converted to monoglycerides by glycerolysis process. The monoglycerides derived from the different oils were reacted with phthalic anhydride at 2:1 monoglyceride-to-phthalic anhydride ratio to obtain novel polyols called alkyd diols. The polyols were reacted with 4,4'-methylenediphenyldiisocyanate (MDI) to produce five novel poly(alkyd-urethane)s (PAU), namely palm oil based poly(alkyd-urethane) (POPAU), soy oil based poly(alkyd-urethane) (SOPAU), sunflower oil based poly(alkyd-urethane) (SFPAU), palm-soy oils based poly(alkyd-urethane) (POSOPAU) and palm-sunflower oils based poly(alkyd-urethane) (POSFPAU). The successful synthesis of the monoglycerides, alkyd dials and poly(alkyd-urethane)s were confirmed by FTIR, H-1 NMR, C-13 NMR spectroscopy and their morphology were evaluated by scanning electron microscopy (SEM). Further analyses included viscosity, solubility, iodine number testing, gel content, drying time test, thermogravimetric analysis (TGA), crosshatch adhesion tests, impact strength, pencil hardness, chemical and water resistance. Palm oil poly(alkyd-urethane) showed good thermal stability with only 5% weight loss temperature in nitrogen at 270 degrees C. Improvements in coating performance after blending with sunflower oil or soy oil based alkyd-diols were also observed. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据