4.6 Article

Facile Preparation of Hyperbranched Polysiloxane-Grafted Aramid Fibers with Simultaneously Improved UV Resistance, Surface Activity, and Thermal and Mechanical Properties

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 53, 期 7, 页码 2684-2696

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie403642m

关键词

-

资金

  1. Natural Science Foundation of China [21274104]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  3. Suzhou Applied Basic Research Program [SYG201141]

向作者/读者索取更多资源

Simultaneously overcoming the poor UV resistance and surface inertness of aramid fibers while maintaining their excellent mechanical and thermal properties is a challenge. New grafted Kevlar fibers (HSi-g-KFs) were facilely prepared by in situ synthesizing hyperbranched polysiloxane with double bonds and epoxy groups on Kevlar fibers (KFs). As the molar ratio of water to silane was adjusted from 1.1 to 1.4, the surface morphology of HSi-g-KFs successively changed from unconnected dots to condensed dots and to a compact coating of hyperbranched polysiloxane. Compared with KFs, all HSi-g-KFs were found to have remarkably improved surface wettability and UV resistance. After 168 h of UV irradiation, the retentions of the modulus and break extension of the HSi-g-ICFs were as high as 95-97%. In addition, the HSi-g-KFs were found to have much higher thermal stabilities than KFs. These attractive results demonstrate that the method proposed herein is a new and facile approach for preparing high-performance aramid fibers for cutting-edge industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据