4.6 Article

Mechanistic Features of Ultrasound-Assisted Oxidative Desulfurization of Liquid Fuels

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 51, 期 29, 页码 9705-9712

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie300807a

关键词

-

资金

  1. Ministry of New and Renewable Energy, Govt. of India

向作者/读者索取更多资源

A new technology for the removal of sulfur compounds from liquid fuels is oxidative desulfurization. Although several studies have reported the enhancement effect of ultrasound irradiation on oxidative desulfurization, the exact mechanism underlying this enhancement is not known yet. In this study, we have addressed this issue with dual approach of coupling experiments with mathematical model for cavitation. Results of this study have given interesting revelation of interaction between mechanism of ultrasound, cavitation, and oxidation system. Isolation of cavitation phenomenon helps to increase the extent of oxidation. This effect is attributed to formation of hydrogen and carbon monoxide during transient collapse of cavitation bubbles due to thermal dissociation of hexane vapor entrapped in the bubble, which hamper the action of O species generated from the oxidation system. Transient cavitation itself does not give rise to radical formation, because of rather low temperature peaks reached during collapse. Therefore, cavitation does not enhance the oxidation process, but in fact, has an adverse effect on it. Current study has established that the beneficial effect of ultrasound on oxidative desulfurization system is merely of a physical nature (i.e., emulsification due to intense micromixing), with no involvement of a sonochemical effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据