4.6 Article

Ideal CO2/Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 52, 期 3, 页码 1023-1032

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie202305m

关键词

-

资金

  1. Advanced Research Projects Agency-Energy [DE-AR0000098]
  2. National Science Foundation via SBIR through Membrane Technology and Research [IIP1047356]

向作者/读者索取更多资源

Six vinyl-based, imidazolium room-temperature ionic liquid (RTIL) monomers were synthesized and photopolymerized to form dense poly(RTIL) membranes. The effect of polymer backbone (i.e., poly(ethylene), poly(styrene), and poly(acrylate)) and functional cationic substituent (e.g., alkyl, fluoroalkyl, oligo(ethylene glycol), and disiloxane) on ideal CO2/N-2 and CO2/CH4 membrane separation performance was investigated. The vinyl-based poly(RTIL)s were found to be generally less CO2-selective compared to analogous styrene- and acrylate-based poly(RTIL)s. The CO2 permeability of n-hexyl-(69 barrers) and disiloxane- (130 barrers) substituted vinyl-based poly(RTIL)s were found to be exceptionally larger than that of previously studied styrene and acrylate poly(RTIL)s. The CO2 selectivity of oligo(ethylene glycol)-functionalized vinyl poly(RTIL)s was enhanced, and the CO2 permeability was reduced when compared to the n-hexyl-substituted vinyl-based poly(RTIL). Nominal improvement in CO2/CH4 selectivity was observed upon fluorination of the n-hexyl vinyl-based poly(RTIL), with no observed change in CO2 permeability. However, rather dramatic improvements in both CO2 permeability and selectivity were observed upon blending 20 mol % RTIL (emim Tf2N) into the n-hexyl- and disiloxane-functionalized vinyl poly(RTIL)s to form solid liquid composite films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据