4.6 Article

Influence of Flow Regime on Mass Transfer in Different Types of Microchannels

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 50, 期 11, 页码 6906-6914

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie102200j

关键词

-

资金

  1. 7th European Framework Program PILLS Project [CP-FP 214599]
  2. Swiss National Science foundation

向作者/读者索取更多资源

The performance of microstructured reactors (or microchannels) for mass-transfer-controlled liquid-liquid reactions depends on flow regimes that define the specific interfacial area for the mass transfer. In the present work, experiments were carried out to investigate the two phase-flow regimes and the mass transfer at relatively high throughput for a single microchannel (of 1-18 mL/min) in five generic microchannel designs (with and without structured internal surfaces), using a nonreacting water-acetone-toluene system. When the flow results were analyzed collectively in all microchannels, six different flow regimes such as slug, slug-drop, deformed interface, parallel/annular, slug-dispersed, and dispersed flow were observed. The mass-transfer comparison shows that the microchannel with structured internal surfaces shows better performance, because it creates a very fine dispersion, providing high interfacial area, compared to other microchannels. Finally, the mass-transfer data were correlated, which can be used for a priori predictions of mass-transfer rates in microchannels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据