4.6 Article

Morphology, Crystallization Behavior, and Dynamic Mechanical Properties of Biodegradable Poly(ε-caprolactone)/Thermally Reduced Graphene Nanocomposites

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 50, 期 24, 页码 13885-13891

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie202132m

关键词

-

向作者/读者索取更多资源

Biodegradable poly(epsilon-caprolactone) (PCL)/thermally reduced graphene (TRG) nanocomposites were prepared via a solution mixing method at low TRG loadings in this work. Transmission electron microscopy and high resolution transmission electron microscopy observations reveal that a fine dispersion of TRG has been achieved throughout the PCL matrix. Scanning electron microscopy observation shows not only a nice dispersion of TRG but also a strong interfacial adhesion between TRG and the matrix, as evidenced by the presence of some TRG nanosheets embedded in the matrix. Nonisothermal melt crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology, and crystal structure of neat PCL and the PCL/TRG nanocomposites were studied in detail with various techniques. The experimental results indicate that both nonisothermal and isothermal melt crystallization of PCL have been enhanced significantly by the presence of TRG in the nanocomposites due to the heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PCL do not change. Dynamic mechanical analysis study shows that the storage modulus of the nanocomposites has been greatly improved by about 203% and 292%, respectively, with incorporating only 0.5 and 2.0 wt % TRG at -80 degrees C as compared with neat PCL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据