4.6 Article

Electrospinning Combined with Nonsolvent-Induced Phase Separation To Fabricate Highly Porous and Hollow Submicrometer Polymer Fibers

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 51, 期 4, 页码 1761-1766

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie2009229

关键词

-

资金

  1. Unilever Research (India)
  2. DST Unit on Nanosciences at IIT Kanpur
  3. DST-IRHPA

向作者/读者索取更多资源

A simple and efficient method to induce porosity both in the core and on the surface of electrospun submicrometer polymer fibers has been demonstrated by combining nonsolvent-induced phase separation with electrospinning. In this modified electrospinning process, fibers are collected in a bath filled with a nonsolvent for the polymer being electrospun. The presence of residual solvent in the nanofibers causes phase separation once the fibers reach the nonsolvent bath. Poly(acrylonitrile) (PAN) in dimethylformamide (DMF) is chosen as the model polymer/solvent system. The versatility of the approach is demonstrated by extending the technique to poly(styrene)/DMF, poly(styrene)/toluene, and poly(methyl methacrylate)/DMF systems. With a suitable solvent (ethanol) and optimized tip-to-collector distance, the specific surface area of the porous PAN fibers increased to an order of magnitude compared to that of the smooth fibers obtained by the conventional electrospinning. Further, this electrospinning technique is extended to core-shell electrospinning, enabling the fabrication directly in one step of PAN-based hollow fibers having porosity both in the surface and the bulk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据