4.6 Article Proceedings Paper

Rule-Based Generation of Thermochemical Routes to Biomass Conversion

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 49, 期 21, 页码 10459-10470

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie100546t

关键词

-

资金

  1. Directorate For Engineering
  2. Emerging Frontiers & Multidisciplinary Activities [0937706] Funding Source: National Science Foundation

向作者/读者索取更多资源

Biomass conversion to fuels and chemicals involves a multitude of oxygen-containing compounds and thermochemical reaction routes. A detailed elucidation of the process chemistry is, thus, a key step in understanding the reaction mechanisms and designing chemical processes in a biorefinery. In this paper, a computational tool, called Rule Input Network Generator (RING), is presented as a platform for modeling diverse homogeneous and heterogeneous chemistries in biomass conversion and automatically generating the underlying complex reaction networks. RING accepts a set of reaction rules and initial reactants as inputs and exhaustively generates the reactions of the system. The reaction center of an elementary step is represented by a SMARTS-like string and identified as a submolecular pattern in a reactant molecular graph using a pattern-matching algorithm. The reaction events are subsequently modeled as a graph transformation system. The generality of this framework was substantiated by the successful application of RING in reproducing the reaction mechanisms of different biomass conversion systems, such as acid-catalyzed dehydration of fructose, base-catalyzed esterification of triglycerides, and gas phase pyrolysis of fatty esters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据