4.6 Article

Multiple Microcapillary Reactor for Organic Synthesis

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 49, 期 10, 页码 4576-4582

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie901674h

关键词

-

资金

  1. Engineering and Physical Science Research Council
  2. Royal Society
  3. Cambridge European Trust
  4. Ralph Raphael Studentship award
  5. BP Endowment

向作者/读者索取更多资源

This paper presents process characteristics and proof of concept reactions for a newly developed microreactor system, termed the Cambridge Disc Microreactor (CDM), using plastic microcapillary flow discs (MFDs). These flat reactor discs were constructed from a flexible, temperature resilient, solvent resistant fluoropolymer microcapillary film (MCF) comprising 10 parallel capillary channels with mean hydraulic diameters typically between 150 and 400 mu m. The MFDs were heated inside the microreactor via conductive heat transfer from two heated surfaces, which were in contact with the flat outer surfaces of the disc. This allowed continuous flow processing of liquid phase reactions through the reactor at elevated temperatures and pressures at a precisely controlled residence time. The process characteristics of the reactor system were established experimentally by investigating the hydraulic response and the temperature profile or modeled analytically such that the residence time characteristics inside the device could be predicted. A series of organic chemical reactions, namely electrophilic fluorination and the formation of various mono- and bicyclic heteroaromatic compounds, were conducted in the system at temperatures between 110 and 120 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据