4.6 Article

Kinetics of Polycarbonate Glycolysis in Ethylene Glycol

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 48, 期 2, 页码 685-691

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie8010947

关键词

-

资金

  1. Korea Ministry of Environment

向作者/读者索取更多资源

Depolymerization of polycarbonate waste by glycolysis using ethylene glycol without catalyst was explored in order to get the monomer bisphenol A (BPA). The depolymerized products were identified by GC/MS and FTIR spectroscopy. The effects of operation variables such as reaction time, reaction temperature, ethylene glycol/polycarbonate (EG/PC) weight ratio, and the kinetics of glycolysis were studied. A maximum yield of BPA of 95.6% was achieved at a reaction temperature of 220 degrees C for 85 min with an EG/PC weight ratio 4. It was found that the depolymerization reaction has two different activation energies, indicating that the reaction occurs in series. A new model was proposed to explain the depolymerization reaction which consists of a series of reactions: random scission from high molecular weight PC to its solid oligomer, dissolution from the solid oligomer to liquid oligomer, and homogeneous degradation from the liquid oligomer to its monomer, BPA. The activation energies were found to be 98.9 kJ/moI for the random scission reaction, 32.7 kJ/mol for the dissolution, and 355.8 kJ/mol for the homogeneous reaction, respectively. The predicted values by the proposed model were shown in good agreement with the experimental ones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据