4.6 Article

Robust optimization for petrochemical network design under uncertainty

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 47, 期 11, 页码 3912-3919

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie0713184

关键词

-

向作者/读者索取更多资源

This paper addresses the strategic planning, design, and optimization of a network of petrochemical processes under uncertainty and risk considerations. In this work, we extend the deterministic model proposed by Al-Sharrah et al. [Ind. Eng. Chem. Res. 2001, 40, 2103; Chem. Eng. Res. Des. 2006, 84, 1019] to account for parameter uncertainty in process yield, raw material cost, product prices, and lower product market demand. The problem was formulated as a two-stage stochastic mixed-integer nonlinear programming model (MINLP). Risk was accounted for in terms of deviation in both projected benefits in the first stage variables and process yield and forecasted demand in terms of the recourse variables. For each term,,a different scaling factor was used to analyze the sensitivity of the petrochemical network due to variations of each component. The study showed that the final petrochemical network bears more sensitivity to variations in product demand and process yields for scaling parameters values that maintain the final petrochemical structure obtained form the stochastic model. The concept of expected value of perfect information (EVPI) and value of the stochastic solution (VSS) are also investigated to numerically illustrate the value of including the randomness of the different model parameters. Modeling uncertainty in the process parameters provided a more robust analysis and practical perspective of this type of problem in the chemical industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据