4.6 Article

Comparative assessment of batch reactors for scalable hydrogen production

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 47, 期 14, 页码 4665-4674

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie800294y

关键词

-

向作者/读者索取更多资源

A new concept of a variable volume batch reactor, CO2/H-2 active membrane piston (CHAMP), is introduced for scalable hydrogen production for portable and distributed applications. The conceptual design and operating principles of the CHAMP reactor are discussed, aiming at precise control of residence time and optimal performance. A simplified reactor model is formulated, and the operation of the idealized reactor is numerically simulated. In the ideal limit of no heat or mass transfer limitations, the hydrogen yield rate and efficiency of the CHAMP reactor are shown to exceed that of a comparable, traditional continuous-flow (CF) design. In the presence of transport limitations, the relative performance enhancement enabled by the CHAMP reactor is even greater. Additionally, the transient nature of the CHAMP reactor makes it particularly suited for applications with varying power demands, such as in transportation, and its stackable design makes it highly scalable across a wide range of power requirements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据