4.3 Article

Nicotine inhibits the proliferation by upregulation of nitric oxide and increased HDAC1 in mouse neural stem cells

期刊

出版社

SPRINGER
DOI: 10.1007/s11626-014-9763-0

关键词

Neural stem cells; Nicotine; Nitric oxide; HDAC1; SIRT1

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2013R1A1A2057787, 550-20110027]
  2. Kangwon National University

向作者/读者索取更多资源

Cigarette smoking (CS) is considered one of the major risk factors to cause neurodegenerative disorders. Nicotine is the main chemical in CS which is responsible for dysfunction of the brain as a neuroteratogen. Also, nicotine dependency is a real mental illness and disease. Recently, chronic nicotine exposure has been shown to cause oxidative/nitrosative stress leading to a deleterious condition to cellular death in different brain regions. However, little is known about the effects of nicotine on mouse neural stem cells (mNSCs). The aim of this study is to investigate the effects of nicotine on mNSCs and elucidate underlying mechanisms involved in expression of a diversity of genes regulated by nicotine. When mNSCs were isolated from the whole brain of embryonic day 16 mice treated with nicotine at vehicle, 100, 400, and 800 mu M for 5 d, nicotine significantly decreased the number and size of neurospheres. In immunocytochemistry, nicotine-exposed mNSCs expressing nestin showed the shortened filaments and condensed nuclei. In RT-PCR, messenger RNA (mRNA) levels of proliferating cell nuclear antigen (PCNA) and sirtuin1 (SIRT1) were significantly decreased, while the production of nitric oxide and mRNA levels of cyclooxygenase2 (COX-2), tumor necrosis factor-alpha TNF-alpha, and histone deacetylase 1 (HDAC1) were increased in a dose-dependent manner. In addition, sodium butyrate and valproic acid, HDAC inhibitors, partially rescue proliferation of mNSCs via inhibition of HDAC1 expression and NO production. Taken together, these data demonstrate that prolonged exposure of nicotine decreased proliferation of mNSCs by increased NO and inflammatory cytokine through increased HDAC1. Furthermore, this study could help in the development of a therapy for nicotine-induced neurodegenerative disorder and drug abuse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据