4.5 Article

Menstrual blood-derived stromal stem cells inhibit optimal generation and maturation of human monocyte-derived dendritic cells

期刊

IMMUNOLOGY LETTERS
卷 162, 期 2, 页码 239-246

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.imlet.2014.10.005

关键词

Menstrual blood stromal stem cell; Dendritic cell; Monocyte; IL-6; IL-10

资金

  1. Tarbiat Modares University of Medical Sciences [5066438]
  2. Lorestan University of Medical Sciences [5066438]

向作者/读者索取更多资源

Introduction: Menstrual blood stromal stem Cells (MenSCs) have shown promising potential for future clinical settings. Nonetheless, data regarding their interaction with immune cells is still scarce. Here, we investigated whether MenSCs could affect the generation and/or maturation of human blood monocyte-derived dendritic cells (DCs). Materials and methods: MenSCs were isolated from menstrual blood of normal women through culture of adherent mononuclear cells. Magnetically-isolated peripheral blood monocytes were differentiated toward immature DCs (iDC) and mature DCs (mDCs) in the presence or absence of MenSCs. Monocyte-derived cells were assessed for the percentage of monocyte-, iDC-, and mDC-specific markers as well as the expression of costimulatory molecules. IL-6 and IL-10 levels were also determined in supernatants of MenSC-monocytes cocultures. Results: Optimal phenotypic differentiation of monocytes into iDCs was inhibited upon coculture with MenSCs. Moreover, higher levels of IL-6 and IL-10 were detected in these settings. Even though addition of MenSCs to iDC cultures could not prevent iDC maturation, coculture of MenSCs with monocytes from the beginning of differentiation process could effectively hinder generation of fully mature DCs. Conclusion: This is the first study to address the inhibitory impact of MenSCs on generation and maturation of DCs. IL-6 and IL-10 could be partly held responsible for this effect. Given the central roles of DCs in regulation of immune responses, these results highlight the importance of further research on the potential modulatory impacts of MenSCs, as rather easily accessible and expandable stem cells, on the immune system-related cells. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据