4.6 Review

Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs)

期刊

IMMUNOLOGICAL REVIEWS
卷 230, 期 -, 页码 172-187

出版社

WILEY
DOI: 10.1111/j.1600-065X.2009.00790.x

关键词

innate immunity; infectious diseases; galectins; pathogen-associated molecular patterns; damage-associated molecular patterns

向作者/读者索取更多资源

The glycocalyx is a glycan layer found on the surfaces of host cells as well as microorganisms and enveloped virus. Its thickness may easily exceed 50 nm. The glycocalyx does not only serve as a physical protective barrier but also contains various structurally different glycans, which provide cell- or microorganism-specific 'glycoinformation'. This information is decoded by host glycan-binding proteins, lectins. The roles of lectins in innate immunity are well established, as exemplified by collectins, dectin-1, and dendritic cell (DC)-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). These mammalian lectins are synthesized in the secretory pathway and presented on the cell surface to bind to specific glycan 'epitopes'. As they recognize non-self glycans presented by microorganisms, they can be considered as receptors for pathogen-associated molecular patterns (PAMPs), i.e. pattern recognition receptors (PRRs). One notable exception is the galectin family. Galectins are synthesized and stored in the cytoplasm, but upon infection-initiated tissue damage and/or following prolonged infection, cytosolic galectins are either passively released by dying cells or actively secreted by inflammatory activated cells through a non-classical pathway, the 'leaderless' secretory pathway. Once exported, galectins act as PRR, as well as immunomodulators (or cytokine-like modulators) in the innate response to some infectious diseases. As galectins are dominantly found in the lesions where pathogen-initiated tissue damage signals appear, this lectin family is also considered as potential damage-associated molecular pattern (DAMP) candidates that orchestrate innate immune responses alongside the PAMP system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据