4.6 Review

Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms

期刊

IMMUNOLOGICAL REVIEWS
卷 226, 期 -, 页码 41-56

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1600-065X.2008.00707.x

关键词

monocytes/macrophages; cytokine receptors; Toll-like receptors/pattern-recognition receptors; signal transduction; inflammation

资金

  1. Arthritis Foundation
  2. National Institutes of Health

向作者/读者索取更多资源

Activated macrophages and their inflammatory products play a key role in innate immunity and in pathogenesis of autoimmune/inflammatory diseases. Macrophage activation needs to be tightly regulated to rapidly mount responses to infectious challenges but to avoid toxicity associated with excessive activation. Rapid and potent macrophage activation is driven by cytokine-mediated feedforward loops, while excessive activation is prevented by feedback inhibition. Here we discuss feedforward mechanisms that augment macrophage responses to Toll-like receptor (TLR) ligands and cytokines that are mediated by signal transducer and activator of transcription 1 (STAT1) and induced by interferon-gamma (IFN-gamma). IFN-gamma also drives full macrophage activation by inactivating feedback inhibitory mechanisms, such as those mediated by interleukin-10 (IL-10), and STAT3. Priming of macrophages with IFN-gamma reprograms cellular responses to other cytokines, such as type I IFNs and IL-10, with a shift toward pro-inflammatory STAT1-dominated responses. Similar but partially distinct priming effects are induced by other cytokines that activate STAT1, including type I IFNs and IL-27. We propose a model whereby opposing feedforward and feedback inhibition loops crossregulate each other to fine tune macrophage activation. In addition, we discuss how dysregulation of the balance between feedforward and feedback inhibitory mechanisms can contribute to the pathogenesis of autoimmune and inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据