4.2 Article

Dynamics of capturing process of multiple magnetic nanoparticles in a flow through microfluidic bioseparation system

期刊

IET NANOBIOTECHNOLOGY
卷 3, 期 3, 页码 55-64

出版社

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-nbt.2008.0015

关键词

-

资金

  1. National Science Foundation [EEC-0823974]

向作者/读者索取更多资源

A mathematical model based on finite-element technique is developed for predicting the transport and capture of multiple magnetic nanoparticles in a microfluidic system that consists of a microfluidic channel enclosed by a permanent magnet. The trajectories and trapping efficiencies are calculated for multiple magnetic nanoparticles when released in the microsystem. It is demonstrated that not only the size but also the point of release of nanoparticles within the microchannel affects the capturing process. Influence of three important parameters, inlet velocities of fluid containing magnetic nanoparticles, diameter of magnetic nanoparticles and magnetic field strength on the trapping efficiency are investigated and optimised values of inlet velocity and magnetic field strength for completely trapping 50 nm magnetic nanoparticles are predicted. It is further demonstrated that the angular position of magnet around the microchannel is also critical in dictating the resulting bioseparation performance. Furthermore, combination of these analyses using the mathematical model will be very useful in the design and development of novel microfluidic bioseparation microsystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据