4.6 Article Proceedings Paper

Parametric optimization of mechanochemical process for synthesis of Cu(In, Ga)0.5Se2 nanoparticles

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2015.02.046

关键词

Mechanochemical synthesis; Ball to powder ratio; Milling time and milling speed

资金

  1. [CeMIE-Sol 207450/P26]

向作者/读者索取更多资源

Copper indium gallium diselenide (CIGS) is a promising photovoltaic material. Nonvacuum deposition of CIGS is a recommended strategy to produce cost effective solar cells. Amongst various non-vacuum deposition techniques, nanoparticle based deposition methods have gained major impetus due to their economic benefits, simplicity and flexibility to scale up. In the present work, CIGS nanoparticles are synthesized by a mechanochemical process and the effect of milling parameters (ball to powder ratio (BPR), milling speed (rpm) and milling time) on the structural, morphological and compositional properties have been studied. CIGS nanoparticles are synthesized with BPR of 15:1, 20:1 and 25:1 for different milling times ranging from 1 to 6 h and milling speeds from 200 to 400 rpm. The synthesized CIGS nanoparticles have been characterized using XRD, FESEM, HRTEM and EDAX analysis. XRD analysis showed the formation of chalcopyrite CIGS nanoparticles without any secondary phase within 2 h of milling time with a BPR of 25:1 at 400 rpm. The influence of milling parameters on morphology and agglomeration has been studied using FESEM. It is observed that the nanoparticles synthesized at higher BPR with shorter milling time, are less agglomerated. The compositional study performed by EDAX analysis showed that the synthesized CIGS nanoparticles are in good match with the desired stoichiometry of Cu(In,Ga)(0.5)Se-2. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据