4.7 Article

Novel Model-Based Estimators for the Purposes of Fault Detection and Diagnosis

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 18, 期 4, 页码 1237-1249

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2013.2253616

关键词

Fault detection and diagnosis; interacting multiple model (IMM); Kalman filter (KF); smooth variable structure filter (SVSF)

向作者/读者索取更多资源

The interacting multiple model (IMM) strategy is particularly useful for systems that behave according to a number of different operating modes. In this strategy, each operating mode is described by a model and has its own filter. The filters are run in parallel, and an overall operating mode probability is calculated that provides an indication of the current operating regime of the system. The smooth variable structure filter (SVSF) is a relatively new estimation method based on the sliding mode concept, formulated in a predictor-corrector form. For systems with modeling uncertainties, the SVSF has shown to be more accurate and robust when compared with other methods such as the extended Kalman filter (EKF). A newer form of the SVSF makes use of a time-varying smoothing boundary layer (SVSF-VBL). This paper introduces new model-based estimators; based on the IMM strategy combined with the SVSF and SVSF-VBL, referred to as the IMM-SVSF and IMM-SVSF-VBL, respectively. The new strategies are applied to a type of aerospace actuator referred to as an electrohydrostatic actuator, which provides a comprehensive system for fault detection and diagnosis. The results are compared with the popular IMM-EKF strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据