4.7 Article

Active Control for an Offshore Crane Using Prediction of the Vessel's Motion

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 16, 期 2, 页码 297-309

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2010.2041933

关键词

Heave compensation; heave prediction; marine operation; nonlinear control; offshore technology

向作者/读者索取更多资源

During offshore installations in harsh sea conditions, the involved crane system must satisfy rigorous requirements in terms of safety and efficiency. The forces resulting from the vertical motion of the vessel have an extensive effect on the overall crane structure and its lifetime. Moreover, vessel motion handicaps the operator during fine positioning of the payload. Hence, an active compensation system for the vertical vessel motion is proposed. An important point to consider for such systems is the time delay between the sensors and actuators, which diminishes performance. To compensate the dead times in the system, a prediction algorithm for the vertical motion of the vessel is proposed in the first part. In the second part, an inversion-based control strategy for the hydraulic-driven winch is formulated that considers the dynamic behavior of the drive system. A feedforward controller compensates the vertical-motion disturbance using the predicted motion. The proposed controller together with the prediction algorithm decouple the motion of the rope-suspended payload from the vessel's motion. The active compensation approach is evaluated with simulation and measurement results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据