4.6 Article

Effect of stacking fault in silicon induced by nanoindentation with MD simulation

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2014.09.029

关键词

Stacking fault; Molecular dynamics (MD); Silicon; Nano-indentation

资金

  1. National Basic Research Program of China [2011CB706704]
  2. Higher Specialized Research Fund for the Doctoral Program [201200411]
  3. Fundamental Research Funds for the Central Universities [DUT13JR02]

向作者/读者索取更多资源

A silicon model with the vacancy type stacking fault is built and used for MD nano-indentation simulation to study the different nano-processing characteristics of silicon, compared with the ideal silicon model. During the research, the load-displacement curve, the nano-hardness curve and the strain distribution figure are drawn to study the nano-mechanics properties. The coordination analysis method is introduced to visualize the motion of the silicon and study the structural phase transformations. The results show that the hardness of the model with stacking fault (8.9-9.9 GPa) is lower than the ideal model (9.6-10.4 GPa). The model with stacking fault has a large amount of plastic deformation, which eventually leads to a smaller elastic recovery. During the nano-indentation, there is a new structure beta-Si forming in the perfect model. But in the stacking fault model, a large number of amorphous structures are formed. The material property of amorphous structure is unstable, which is not suitable for ultra-precision machining. Therefore, the stacking fault of interstitial type has an adverse impact on the nano-machining performance of the monocrystalline silicon. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据