4.5 Article

On the Levy-Walk Nature of Human Mobility

期刊

IEEE-ACM TRANSACTIONS ON NETWORKING
卷 19, 期 3, 页码 630-643

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNET.2011.2120618

关键词

Delay-tolerant network (DTN); human mobility; Levy walk; mobile ad hoc network (MANET); mobile network; mobility model

资金

  1. National Science Foundation (NSF) [NeTS-NBD 0626850, 0626850, 0910868, 1016216]
  2. U.S. Army Research Office (ARO) [W911NF-08-1-0105]
  3. Ministry of Knowledge Economy (MKE), Korea
  4. National IT Industry Promotion Agency (NIPA) [NIPA-2010-(C1090-1011-0011)]
  5. Korean Government (MOEHRD) under Korea Research Foundation [KRF-2006-352-D00137]
  6. Division Of Computer and Network Systems
  7. Direct For Computer & Info Scie & Enginr [1016216] Funding Source: National Science Foundation
  8. Division Of Computer and Network Systems
  9. Direct For Computer & Info Scie & Enginr [0626850] Funding Source: National Science Foundation
  10. Ministry of Public Safety & Security (MPSS), Republic of Korea [C1090-1111-0011, C1080-1101-0001] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  11. National Research Foundation of Korea [과C6A1611] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We report that human walk patterns contain statistically similar features observed in Levy walks. These features include heavy-tail flight and pause-time distributions and the super-diffusive nature of mobility. Human walks are not random walks, but it is surprising that the patterns of human walks and Levy walks contain some statistical similarity. Our study is based on 226 daily GPS traces collected from 101 volunteers in five different outdoor sites. The heavy-tail flight distribution of human mobility induces the super-diffusivity of travel, but up to 30 min to 1 h due to the boundary effect of people's daily movement, which is caused by the tendency of people to move within a predefined (also confined) area of daily activities. These tendencies are not captured in common mobility models such as random way point (RWP). To evaluate the impact of these tendencies on the performance of mobile networks, we construct a simple truncated Levy walk mobility (TLW) model that emulates the statistical features observed in our analysis and under which we measure the performance of routing protocols in delay-tolerant networks (DTNs) and mobile ad hoc networks (MANETs). The results indicate the following. Higher diffusivity induces shorter intercontact times in DTN and shorter path durations with higher success probability in MANET. The diffusivity of TLW is in between those of RWP and Brownian motion (BM). Therefore, the routing performance under RWP as commonly used in mobile network studies and tends to be overestimated for DTNs and underestimated for MANETs compared to the performance under TLW.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据