4.5 Article

A Measurement-Driven Anti-Jamming System for 802.11 Networks

期刊

IEEE-ACM TRANSACTIONS ON NETWORKING
卷 19, 期 4, 页码 1208-1222

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNET.2011.2106139

关键词

IEEE 802.11; jamming; power control; rate control

向作者/读者索取更多资源

Dense, unmanaged IEEE 802.11 deployments tempt saboteurs into launching jamming attacks by injecting malicious interference. Nowadays, jammers can be portable devices that transmit intermittently at low power in order to conserve energy. In this paper, we first conduct extensive experiments on an indoor 802.11 network to assess the ability of two physical-layer functions, rate adaptation and power control, in mitigating jamming. In the presence of a jammer, we find that: 1) the use of popular rate adaptation algorithms can significantly degrade network performance; and 2) appropriate tuning of the carrier sensing threshold allows a transmitter to send packets even when being jammed and enables a receiver to capture the desired signal. Based on our findings, we build ARES, an Anti-jamming REinforcement System, which tunes the parameters of rate adaptation and power control to improve the performance in the presence of jammers. ARES ensures that operations under benign conditions are unaffected. To demonstrate the effectiveness and generality of ARES, we evaluate it in three wireless test-beds: 1) an 802.11n WLAN with MIMO nodes; 2) an 802.11a/g mesh network with mobile jammers; and 3) an 802.11a WLAN with TCP traffic. We observe that ARES improves the network throughput across all test-beds by up to 150%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据