4.7 Article

Efficient Formulations for Exact Stochastic Simulation of Chemical Systems

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TCBB.2009.47

关键词

Biology and genetics; stochastic processes; algorithm design and analysis

资金

  1. National Institute of Biomedical Imaging and Bioengineering [R01EB007511]
  2. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB007511] Funding Source: NIH RePORTER

向作者/读者索取更多资源

One can generate trajectories to simulate a system of chemical reactions using either Gillespie's direct method or Gibson and Bruck's next reaction method. Because one usually needs many trajectories to understand the dynamics of a system, performance is important. In this paper, we present new formulations of these methods that improve the computational complexity of the algorithms. We present optimized implementations, available from http://cain.sourceforge.net/, that offer better performance than previous work. There is no single method that is best for all problems. Simple formulations often work best for systems with a small number of reactions, while some sophisticated methods offer the best performance for large problems and scale well asymptotically. We investigate the performance of each formulation on simple biological systems using a wide range of problem sizes. We also consider the numerical accuracy of the direct and the next reaction method. We have found that special precautions must be taken in order to ensure that randomness is not discarded during the course of a simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据