4.4 Article

Structure-mechanical property relationship in fused deposition modelling

期刊

MATERIALS SCIENCE AND TECHNOLOGY
卷 31, 期 8, 页码 895-903

出版社

MANEY PUBLISHING
DOI: 10.1179/1743284715Y.0000000010

关键词

Additive manufacturing; Strain energy; Polymers; Digital image correlation; Finite element simulation

向作者/读者索取更多资源

The relationship between the filament scale phenomena and the macroscopic properties of parts manufactured by fused deposition modelling (FDM) of thermoplastic polymers has been investigated using planar geometry dog bone samples, representing layer by layer lamina in an additively manufactured part. Finite element simulations of the response of the FDM part(s) at multiple length scales (filament to macro) are compared with full field strain data obtained experimentally for different raster angles and filament gaps. The strain field, strain energy density, and effective Young's modulus are evaluated. Principal strains resulting from the applied axial loading shifted from the inner rasters to the contours of the FDM planar sample at certain raster angles as the air gap increased, which significantly decreased the effective usage of the material leading to strain localization and premature part failure. The research presented provides a pathway to an effective multiscale approach to optimise the raster contour fill pattern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据