4.7 Article

Asynchronous Physical-Layer Network Coding

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2011.120911.111067

关键词

Physical-layer network coding; network coding; synchronization

资金

  1. General Research Fund [414911]
  2. AoE [E-02/08]
  3. University Grant Committee of the Hong Kong Special Administrative Region, China

向作者/读者索取更多资源

A key issue in physical-layer network coding (PNC) is how to deal with the asynchrony between signals transmitted by multiple transmitters. That is, symbols transmitted by different transmitters could arrive at the receiver with symbol misalignment as well as relative carrier-phase offset. A second important issue is how to integrate channel coding with PNC to achieve reliable communication. This paper investigates these two issues and makes the following contributions: 1) We propose and investigate a general framework for decoding at the receiver based on belief propagation (BP). The framework can effectively deal with symbol and phase asynchronies while incorporating channel coding at the same time. 2) For unchannel-coded PNC, we show that for BPSK and QPSK modulations, our BP method can significantly reduce the asynchrony penalties compared with prior methods. 3) For QPSK unchannel-coded PNC, with a half symbol offset between the transmitters, our BP method can drastically reduce the performance penalty due to phase asynchrony, from more than 6 dB to no more than 1 dB. 4) For channel-coded PNC, with our BP method, both symbol and phase asynchronies actually improve the system performance compared with the perfectly synchronous case. Furthermore, the performance spread due to different combinations of symbol and phase offsets between the transmitters in channel-coded PNC is only around 1 dB. The implication of 3) is that if we could control the symbol arrival times at the receiver, it would be advantageous to deliberately introduce a half symbol offset in unchannel-coded PNC. The implication of 4) is that when channel coding is used, symbol and phase asynchronies are not major performance concerns in PNC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据