4.7 Article

Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2015.05.048

关键词

Fatigue; Microstructure; Crystal plasticity; Cyclic loading; Probability and statistics

资金

  1. Integrated Systems Solutions, Inc.

向作者/读者索取更多资源

The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. This paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FlPs) averaged over different volume sizes and shapes relative to the anticipated fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FlPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据