4.7 Article

ABAKA: An Anonymous Batch Authenticated and Key Agreement Scheme for Value-Added Services in Vehicular Ad Hoc Networks

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 60, 期 1, 页码 248-262

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2010.2089544

关键词

Authentication; batch verification; conditional privacy; elliptic curve cryptographic

资金

  1. National Science Council of Taiwan [NSC 98-2219-E-002-021]

向作者/读者索取更多资源

In this paper, we introduce an anonymous batch authenticated and key agreement (ABAKA) scheme to authenticate multiple requests sent from different vehicles and establish different session keys for different vehicles at the same time. In vehicular ad hoc networks (VANETs), the speed of a vehicle is changed from 10 to 40 m/s (36-144 km/h); therefore, the need for efficient authentication is inevitable. Compared with the current key agreement scheme, ABAKA can efficiently authenticate multiple requests by one verification operation and negotiate a session key with each vehicle by one broadcast message. Elliptic curve cryptography is adopted to reduce the verification delay and transmission overhead. The security of ABAKA is based on the elliptic curve discrete logarithm problem, which is an unsolved NP-complete problem. To deal with the invalid request problem, which may cause the batch verification fail, a detection algorithm has been proposed. Moreover, we demonstrate the efficiency merits of ABAKA through performance evaluations in terms of verification delay, transmission overhead, and cost for rebatch verifications, respectively. Simulation results show that both the message delay and message loss rate of ABAKA are less than that of the existing elliptic curve digital signature algorithm (ECDSA)-based scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据