4.7 Article

Blind Spectrum Sensing for OFDM-Based Cognitive Radio Systems

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 60, 期 3, 页码 858-871

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2010.2103095

关键词

Cognitive radio (CR); generalized likelihood ratio test (GLRT); likelihood ratio test (LRT); orthogonal frequency-division multiplexing (OFDM); spectrum sensing

资金

  1. Natural Sciences and Engineering Council of Canada (NSERC)

向作者/读者索取更多资源

Given the ever-growing demand for radio spectrum, cognitive radio has recently emerged as an attractive wireless technology. Since orthogonal frequency-division multiplexing (OFDM) is one of the major wideband transmission techniques, detection of OFDM signals in low-signal-to-noise-ratio scenario is an important research problem. In this paper, it is shown that cyclic prefix (CP) correlation coefficient (CPCC)-based spectrum sensing, which was previously introduced as a simple and computationally efficient spectrum-sensing method for OFDM signals, is a special case of the constrained generalized likelihood ratio test (GLRT) in the absence of multipath. As such, the performance of this algorithm degrades in a multipath scenario, where OFDM is usually implemented. Furthermore, by considering multipath correlation in the GLRT algorithm and employing the inherent structure of OFDM signals, a simple and low-complexity algorithm called the multipath-based constrained-GLRT (MP-based C-GLRT) algorithm is obtained. The MP-based C-GLRT algorithm is shown to outperform the CPCC-based algorithm in a rich multipath environment. Further performance improvement can be achieved by simply combining both the CPCC- and MP-based C-GLRT algorithms. A simple GLRT-based detection algorithm is also developed for unsynchronized OFDM signals, whose performance is only slightly degraded when compared with the synchronized detection in a rich multipath environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据