4.6 Article Proceedings Paper

Study of the Acoustoelectric Effect for SAW Sensors

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2010.1467

关键词

-

向作者/读者索取更多资源

Research has recently begun on the use of ultrathin films and nanoclusters as mechanisms for sensing of gases, liquids, etc., because the basic material parameters may change because of film morphology. As films of various materials are applied to the surface of SAW devices for sensors, the conductivity of the films may have a strong acoustoelectric effect, whether desired or not. The purpose of this paper is to reexamine the theory and predictions of the acoustoelectric effect for SAW interactions with thin conducting or semi-conducting films. The paper will summarize the theory and predict the effects of thin film conductivity on SAW velocity and propagation loss versus frequency and substrate material. The theory predicts regions of conductivity which result in extremely high propagation loss, and which also correspond to the mid-point between the open and short-circuit velocities. As an example of the verification and possible usefulness of the acoustoelectric effect, recent experimental results of palladium (Pd) thin films on a YZ LiNbO3 SAW delay line have shown large changes in propagation loss, depending on the Pd film thickness, exposure to hydrogen gas, or both. By proper design, a sensitive hydrogen leak detector SAW sensor can be designed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据