4.3 Article

Learning of Fuzzy Cognitive Maps Using Density Estimate

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2011.2182646

关键词

Fuzzy cognitive maps (FCMs); real-coded genetic algorithms (RCGAs)

资金

  1. Alberta Ingenuity
  2. Alberta Informatics Circle of Research Excellence (iCORE)
  3. Natural Sciences & Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Fuzzy cognitive maps (FCMs) are convenient and widely used architectures for modeling dynamic systems, which are characterized by a great deal of flexibility and adaptability. Several recent works in this area concern strategies for the development of FCMs. Although a few fully automated algorithms to learn these models from data have been introduced, the resulting FCMs are structurally considerably different than those developed by human experts. In particular, maps that were learned from data are much denser (with the density over 90% versus about 40% density of maps developed by humans). The sparseness of the maps is associated with their interpretability: the smaller the number of connections is, the higher is the transparency of the map. To this end, a novel learning approach, sparse real-coded genetic algorithms (SRCGAs), to learn FCMs is proposed. The method utilizes a density parameter to guide the learning toward a formation of maps of a certain predefined density. Comparative tests carried out for both synthetic and real-world data demonstrate that, given a suitable density estimate, the SRCGA method significantly outperforms other state-of-the-art learning methods. When the density estimate is unknown, the new method can be used in an automated fashion using a default value, and it is still able to produce models whose performance exceeds or is equal to the performance of the models generated by other methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据