4.3 Article

A New Iterative Learning Controller Using Variable Structure Fourier Neural Network

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2009.2026729

关键词

Fourier neural network (FNN); iterative learning control (ILC); orthogonal activation function; phase compensation

资金

  1. Research Grants Council of Hong Kong, China [HKUST6114/03E]

向作者/读者索取更多资源

A new iterative learning control approach based on Fourier neural network (FNN) is presented for the tracking control of a class of nonlinear systems with deterministic uncertainties. The proposed controller consists of two loops. The inner loop is a feedback control action that decreases system variability and reduces the influence of random disturbances. The outer loop is an FNN-based learning controller that generates the system input to suppress the error caused by system nonlinearities and deterministic uncertainties. The FNN employs orthogonal complex Fourier exponentials as its activation functions. Therefore, it is essentially a frequency-domain method that converts the tracking problem in the time domain into a number of regulation problems in the frequency domain. Through a novel phase compensation technique, this model-free method makes it possible to use higher-frequency components in the FNN to improve the tracking performance. In addition, the structure of the FNN can be reconfigured according to the system output information to make the learning more efficient and increase the convergent speed of the tracking error. Experiments on both a commercial gear box and a belt-driven positioning table are conducted to show the effectiveness of the proposed controller.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据