4.3 Article

Faster Self-Organizing Fuzzy Neural Network Training and a Hyperparameter Analysis for a BrainComputer Interface

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2009.2018469

关键词

Autonomous; brain-computer interface (BCI); electroencephalogram (EEG); fuzzy neural network (NN); self-organization; time-series prediction

资金

  1. Engineering and Physical Sciences Research Council [EP/H012958/1] Funding Source: researchfish

向作者/读者索取更多资源

This paper introduces a number of modifications to the learning algorithm of the self-organizing fuzzy neural network (SOFNN) to improve computational efficiency. It is shown that the modified SOFNN favorably compares to other evolving fuzzy systems in terms of accuracy and structural complexity. An analysis of the SOFNN's effectiveness when applied in an electroencephalogram (EEG)-based brain-computer interface (BCI) involving the neural-time-series-prediction-preprocessing (NTSPP) framework is also presented, where a sensitivity analysis (SA) of the SOFNN hyperparameters was performed using EEG data recorded from three subjects during left/right-motor-imagery-based BCI experiments. The aim of this one-time SA was to eliminate the need to choose subject- and signal-specific hyperparameters for the SOFNN and thus apply the SOFNN in the NTSPP framework as a parameterless self-organizing framework for EEG preprocessing. The results indicate that a general set of NTSPP parameters chosen via the SA provide the best results when tested in a BCI system. Therefore, with this general set of SOFNN parameters and its self-organizing structure, in conjunction with parameterless feature extraction and linear discriminant classification, a fully parameterless BCI that lends itself well to autonomous adaptation is realizable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据