4.3 Article

Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2015.06.006

关键词

Periodontal regeneration; VERO cells; Chitosan; NSAIDs; Drug release

资金

  1. Higher Education Commission [PM-IPFP/HRD/HEC/2012/2733]
  2. Ministry of Science and Technology Pakistan (MoST) [PC-1]

向作者/读者索取更多资源

Development of biodegradable composites having the ability to suppress or eliminate the pathogenic micro-biota or modulate the inflammatory response has attracted great interest in order to limit/repair periodontal tissue destruction. The present report includes the development of non-steroidal anti-inflammatory drug encapsulated novel biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) electro-spun (e-spun) composite nanofibrous mats and films and study of the effect of heat treatment on fibers and films morphology. It also describes comparative in-vitro drug release profiles from heat treated and control (non-heat treated) nanofibrous mats and films containing varying concentrations of piroxicam (PX). Electrospinning was used to obtain drug loaded ultrafine fibrous mats. The physical/chemical interactions were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). The thermal behavior of the materials was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Control (not heat treated) and heat treated e-spun fibers mats and films were tested for in vitro drug release studies at physiological pH 7.4 and initially, as per requirement burst release patterns were observed from both fibers and films and later sustained release profiles were noted. In vitro cytocompatibility was performed using VERO cell line of epithelial cells and all the synthesized materials were found to be non-cytotoxic. The current observations suggested that these materials are potential candidates for periodontal regeneration. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据