4.3 Article

Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2015.05.003

关键词

Silk fibroin; Electrospinning; Small diameter vascular grafts; Mechanical properties; In vitro degradation; In vitro and in vivo biocompatibility

资金

  1. Cariplo Foundation funds [2007-5457]

向作者/读者索取更多资源

To overcome the drawbacks of autologous grafts currently used in clinical practice, vascular tissue engineering represents an alternative approach for the replacement of small diameter blood vessels. In the present work, the production and characterization of small diameter tubular matrices (inner diameter (ID) = 4.5 and 1.5 mm), obtained by electrospinning (ES) of Bombyx mori silk fibroin (SF), have been considered. ES-SF tubular scaffolds with ID = 1.5 mm are original, and can be used as vascular grafts in pediatrics or in hand microsurgery. Axial and circumferential tensile tests on ES-SF tubes showed appropriate properties for the specific application. The burst pressure and the compliance of ES-SF tubes were estimated using the Laplace's law. Specifically, the estimated burst pressure was higher than the physiological pressures and the estimated compliance was similar or higher than that of native rat aorta and Goretex prosthesis. Enzymatic in vitro degradation tests demonstrated a decrease of order and crystallinity of the SF outer surface as a consequence of the enzyme activity. The in vitro cytocompatibility of the ES-SF tubes was confirmed by the adhesion and growth of primary porcine smooth muscle cells. The in vivo subcutaneous implant into the rat dorsal tissue indicated that ES-SF matrices caused a mild host reaction. Thus, the results of this investigation, in which comprehensive morphological and mechanical aspects, in vitro degradation and in vitro and in vivo biocompatibility were considered, indicate the potential suitability of these ES-SF tubular matrices as scaffolds for the regeneration of small diameter blood vessels. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据