4.3 Article

Influence of ceria nanoparticles on chemical structure and properties of segmented polyesters

出版社

ELSEVIER
DOI: 10.1016/j.msec.2015.04.010

关键词

PET-DLA copolyesters; Nanocomposites; Phase structure; Biocompatibility

向作者/读者索取更多资源

In this work, we present new nanocomposite materials derived from segmented copolyesters, comprising ethylene terephthalate (PET) segments and dimerized linoleic acid (DLA), and nanometric cerium oxide particles (CeO2). Nanoparticles were incorporated in situ during polycondensation in various concentrations, from 0.1 up to 0.6 wt.%. It was found that preparation of nanocomposites in situ, during polycondensation, had no significant influence on changes in segmental composition as determined from H-1 and C-13, as well as 2D NMR. Thermal analysis and calculated degree of crystallinity showed that increasing concentration of ceria nanopartides lead to an increase in mass content of PET crystallites in hard segments. The XRD investigations also showed an increased intensity of characteristic signals with increasing ceria concentration. Simultaneously, the incorporation of CeO2 led to an increase in tensile strength and elongation at break, indicating a reinforcing and plasticizing effect of ceria nanoparticles. However, the modulus at 10% strain decreased with increasing amount of nanoparticles. The in vitro culture of human cardiac progenitor cells (hCPCs) on the new materials indicated a homogenous cell displacement across the samples after 5 days with no signs of cytotoxicity, indicating good biocompatibility in vitro of CeO2-based nanocomposites and a potential for biomedical applications. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据