4.7 Article

Diffusion-Based Noise Analysis for Molecular Communication in Nanonetworks

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 59, 期 6, 页码 2532-2547

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2011.2114656

关键词

Molecular communication; molecule counting noise; nanonetworks; nanotechnology; particle diffusion; Poisson noise

资金

  1. U.S. National Science Foundation [CNS-0910663]

向作者/读者索取更多资源

Molecular communication (MC) is a promising bio-inspired paradigm, in which molecules are used to encode, transmit and receive information at the nanoscale. Very limited research has addressed the problem of modeling and analyzing the MC in nanonetworks. One of the main challenges in MC is the proper study and characterization of the noise sources. The objective of this paper is the analysis of the noise sources in diffusion-based MC using tools from signal processing, statistics and communication engineering. The reference diffusion-based MC system for this analysis is the physical end-to-end model introduced in a previous work by the same authors. The particle sampling noise and the particle counting noise are analyzed as the most relevant diffusion-based noise sources. The analysis of each noise source results in two types of models, namely, the physical model and the stochastic model. The physical model mathematically expresses the processes underlying the physics of the noise source. The stochastic model captures the noise source behavior through statistical parameters. The physical model results in block schemes, while the stochastic model results in the characterization of the noises using random processes. Simulations are conducted to evaluate the capability of the stochastic model to express the diffusion-based noise sources represented by the physical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据