4.7 Article

Robust MIMO Cognitive Radio Via Game Theory

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 59, 期 3, 页码 1183-1201

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2010.2092773

关键词

Cognitive radio; convex optimization; imperfect CSI; MIMO; Nash equilibrium; noncooperative game; variational inequality; worst-case robustness

资金

  1. Hong Kong RGC [618709]

向作者/读者索取更多资源

Cognitive radio (CR) systems improve the spectral efficiency by allowing the coexistence in harmony of primary users (PUs), the legacy users, with secondary users (SUs). This coexistence is built on the premises that no SU can generate interference higher than some prescribed limits against PUs. The system design based on perfect channel state information (CSI) can easily end up violating the interference limits in a realistic situation where CSI may be imperfect. In this paper, we propose a robust design of CR systems, composed of multiple PUs and multiple noncooperative SUs, in either single-input single-output (SISO) frequency-selective channels or more general multiple-input multiple-output (MIMO) channels. We formulate the design of the SU network as a noncooperative game, where the SUs compete with each other over the resources made available by the PUs, by maximizing their own information rates subject to the transmit power and robust interference constraints. Following the philosophy of the worst-case robustness, we take explicitly into account the imperfectness of SU-to-PU CSI by adopting proper interference constraints that are robust with respect to the worst channel errors. Relying on the variational inequality theory, we study the existence and uniqueness properties of the Nash equilibria of the resulting robust games, and devise totally asynchronous and distributed algorithms along with their convergency properties. We also propose efficient numerical methods, based on decomposition techniques, to compute the robust transmit strategy for each SU.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据