4.7 Article

Worst-Case Robust MIMO Transmission With Imperfect Channel Knowledge

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 57, 期 8, 页码 3086-3100

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2009.2021451

关键词

Convex optimization; imperfect CSIT; maximin; MIMO; SDP; worst-case robust designs

资金

  1. Hong Kong RGC [618008]

向作者/读者索取更多资源

In this paper, we consider robust transmit strategies, against the imperfectness of the channel state information at the transmitter (CSIT), for multi-input multi-output (MIMO) communication systems. Following a worst-case deterministic model, the actual channel is assumed to be inside an ellipsoid centered at a nominal channel. The objective is to maximize the worst-case received signal-to-noise ratio (SNR), or to minimize the worst-case Chernoff bound of the error probability, thus leading to a maximin problem. Moreover, we also consider the QoS problem, as a complement of the maximin design, which minimizes the transmit power consumption and meanwhile keeps the received SNR above a given threshold for any channel realization in the ellipsoid. It is shown that, for a general class of power constraints, both the maximin and QoS problems can be equivalently transformed into convex problems, or even further into semidefinite programs (SDPs), thus efficiently solvable by the numerical methods. The most interesting result is that the optimal transmit directions, i.e., the eigenvectors of the transmit covariance, are just the right singular vectors of the nominal channel under some mild conditions. This result leads to a channel-diagonalizing structure, as in the cases of perfect CSIT and statistical CSIT with mean or covariance feedback, and reduces the complicated matrix-valued problem to a scalar power allocation problem. Then we provide the closed-form solution to the resulting power allocation problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据