4.7 Article Proceedings Paper

Robust Transceiver Optimization in Downlink Multiuser MIMO Systems

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 57, 期 9, 页码 3576-3587

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2009.2020030

关键词

Joint transmit-receive equalization; multiuser multiple-input multiple-output (MIMO) systems; robustness; semidefinite programming; transceiver design

向作者/读者索取更多资源

We study robust transceiver optimization in a downlink, multiuser, wireless system, where the transmitter and the receivers are equipped with antenna arrays. The robustness is defined with respect to imperfect knowledge of the channel at the transmitter. The errors in the channel state information are assumed to be bounded, and certain quality-of-service targets in terms of mean-square errors (MSEs) are guaranteed for all channels from the uncertainty regions. Iterative algorithms are proposed for the transceiver design. The iterations perform alternating optimization of the transmitter and the receivers and have equivalent semidefinite programming representations with efficient numerical solutions. The framework supports robust counterparts of several MSE-optimization problems, including transmit power minimization with per-user or per-stream MSE constraints, sum MSE minimization, min-max fairness, etc. Although the convergence to the global optimum cannot be claimed due to the intricacy of the problems, numerical examples show good practical performance of the presented methods. We also provide various possibilities for extensions in order to accommodate a broader set of scenarios regarding the precoder structure, the uncertainty modeling, and a multicellular setup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据