4.7 Article

Distributing the Kalman filter for large-scale systems

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 56, 期 10, 页码 4919-4935

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2008.927480

关键词

distributed algorithms; distributed estimation; information filters; iterative methods; Kalman filtering; large-scale systems; matrix inversion; sparse matrices

资金

  1. DARPA DSO Advanced Computing and Mathematics Program Integrated Sensing and Processing (ISP) Initiative [DAAD 19-02-1-0180]
  2. NSF [ECS-0225449, CNS-0428404]
  3. IBM Faculty Award

向作者/读者索取更多资源

This paper presents a distributed Kalman filter to estimate the state of a sparsely connected, large-scale, n-dimensional, dynamical system monitored by a network of N sensors. Local Kalman filters are implemented on n(1)-dimensional subsystems, n(l) << n, obtained by spatially decomposing the large-scale system. The distributed Kalman filter is optimal under an Lth order Gauss-Markov approximation to the centralized filter. We quantify the information loss due to this Lth-order approximation by the divergence, which decreases as L increases. The order of the approximation L leads to a bound on the dimension of the subsystems, hence, providing a criterion for subsystem selection. The (approximated) centralized Riccati and Lyapunov equations are computed iteratively with only local communication and low-order computation by a distributed iterate collapse inversion (DICI) algorithm. We fuse the observations that are common among the local Kalman filters using bipartite fusion graphs and consensus averaging algorithms. The proposed algorithm achieves full distribution of the Kalman filter. Nowhere in the network, storage, communication, or computation of n-dimensional vectors and matrices is required; only n(l) << n dimensional vectors and matrices are communicated or used in the local computations at the sensors. In other words, knowledge of the state is itself distributed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据