4.7 Article

Rehabilitation Exoskeleton Design: Exploring the Effect of the Anterior Lunge Degree of Freedom

期刊

IEEE TRANSACTIONS ON ROBOTICS
卷 29, 期 4, 页码 838-846

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2013.2256309

关键词

Exoskeletons; gait training; lunge degree of freedom

类别

资金

  1. National Center for Medical Rehabilitation Research [HD38582]

向作者/读者索取更多资源

As our robotics community advances its understanding toward the optimal design of robotic exoskeletons for human gait training, the question we ask in this paper is how the anterior lunge degree of freedom in the robotic exoskeleton affects human gait training. Answering this question requires both novel robotic design and novel protocols for human gait training to characterize this effect. To the best of the authors' knowledge, this is the first study to characterize the effect of an exoskeleton's degrees of freedom on human gait adaptation. We explored this question using the Active Leg EXoskeleton (ALEX) II. The study presented was performed using ALEX II under the following two configurations: 1) locking the anterior/posterior translation in the exoskeleton, while allowing other degrees-of-freedom (labeled as locked mode) and 2) keeping the anterior/posterior degree of freedom unlocked (labeled as unlocked mode). Healthy subjects walked at self-selected speeds on a treadmill and were trained to walk with a new gait template, scaled down from their normal template. While both groups showed adaptation and retention over a 26-min period following training, the unlocked group showed better performance in terms of adaptation and retention compared with the locked group.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据