4.7 Article

Two Dimensional Multi-Release Software Reliability Modeling and Optimal Release Planning

期刊

IEEE TRANSACTIONS ON RELIABILITY
卷 61, 期 3, 页码 758-768

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TR.2012.2207531

关键词

Multi-release planning; software reliability growth model; two dimensional software reliability growth model

资金

  1. Department of Science and Technology (DST), India [SR/S4/MS:600/09]

向作者/读者索取更多资源

Long-lived software systems evolve through new product releases, which involve up-gradation of previous released versions of the software in the market. But, upgrades in software lead to an increase in the fault content. Thus, for modeling the reliability growth of software with multiple releases, we must consider the failures of the upcoming upgraded release, and the failures that were not debugged in the previous release. Based on this idea, this paper proposes a mathematical modeling framework for multiple releases of software products. The proposed model takes into consideration the combined effect of schedule pressure and resource limitations using a Cobb Douglas production function in modeling the failure process using a software reliability growth model. The model developed is validated on a four release failure data set. Another major concern for the software development firms is to plan the release of the upgraded version. When different versions of the software are to be released, then the firm plans the release on the basis of testing progress of the new code, as well as the bugs reported during the operational phase of the previous version. In this paper, we formulate an optimal release planning problem which minimizes the cost of testing of the release that is to be brought into market under the constraint of removing a desired proportion of faults from the current release. The problem is illustrated using a numerical example, and is solved using a genetic algorithm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据