4.7 Article

Implementing Virtual Inertia in DFIG-Based Wind Power Generation

期刊

IEEE TRANSACTIONS ON POWER SYSTEMS
卷 28, 期 2, 页码 1373-1384

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2012.2207972

关键词

DFIG; DG; islanding; microgrid; rotating mass; super-capacitor; virtual inertia; wind power

向作者/读者索取更多资源

Although wind power as a renewable energy is assumed to be an advantageous source of energy, its intermittent nature causes difficulties especially in the islanding mode of operation. Conventional synchronous generators can help to compensate for wind fluctuations, but the slow behavior of such systems may result in stability concerns. Here, the virtual inertia method, which imitates the kinetic inertia of synchronous generator, is used to improve the system dynamic behavior. Since the proposed method focuses on short-term oscillations and incorporates no long-term power regulation, it needs no mass storage device. Thus, the method is economical. To prevent any additional cost, the rotating mass connected to the DFIG shaft or a super-capacitor connected to the DC-link of a back-to-back inverter of a wind power generator could be used. The concept and the proposed control methods are discussed in detail. Eigen-value analysis is used to study how the proposed method improves system stability. The advantages and disadvantages of using DFIG rotating mass or super-capacitor as the virtual inertia source are compared. The proposed approach also shows that while virtual inertia is not incorporated directly in long-term frequency and power regulation, it may enhance the system steady-state behavior indirectly. A time domain simulation is used to verify the results of the analytical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据