4.3 Article

Neural Network Control of Resistive Wall Modes in Tokamaks

期刊

IEEE TRANSACTIONS ON PLASMA SCIENCE
卷 38, 期 11, 页码 3226-3233

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2010.2066991

关键词

Control; neural network; tokamaks; wall modes

向作者/读者索取更多资源

A neural network (NN) implementation of an adaptive optimal stochastic output feedback control is developed to stabilize the resistive wall mode (RWM), a critically important instability in fusion machines like tokamaks. The design of an adaptive optimal stochastic output feedback control was discussed and reported earlier by Sun, Sen, and Longman. The system dynamics is experimentally determined via the extended least square method with an exponential forgetting factor and covariance resetting. The optimal output feedback controller is redesigned periodically online based on the system identification. The output measurements and past control inputs are used to construct new control inputs. These are achieved by an architecture of NNs consisting of a pool of sequentially linked Hopfield networks and implemented in hardware with digital NN processors made by the Accurate Automation Corporation. The simulations have shown that the NN adaptive output controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of the inverse of the nonlinear growth rate, which is the time scale of the development of the possibly dangerous levels of fluctuations. This stabilization is similar to that of the simulation with a C++ implementation. It is expected that significant gains can be achieved for the systems of a higher order, which are to be found in future fusion devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据