4.8 Article

Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2014.2342214

关键词

Linear discriminant analysis (LDA); multilinear discriminant analysis (MDA); direct general tensor discriminant analysis (DGTDA); constrained multilinear discriminant analysis (CMDA); pattern classification; higher-order tensor

向作者/读者索取更多资源

In the past decade, great efforts have been made to extend linear discriminant analysis for higher-order data classification, generally referred to as multilinear discriminant analysis (MDA). Existing examples include general tensor discriminant analysis (GTDA) and discriminant analysis with tensor representation (DATER). Both the two methods attempt to resolve the problem of tensor mode dependency by iterative approximation. GTDA is known to be the first MDA method that converges over iterations. However, its performance relies highly on the tuning of the parameter in the scatter difference criterion. Although DATER usually results in better classification performance, it does not converge, yet the number of iterations executed has a direct impact on DATER's performance. In this paper, we propose a closed-form solution to the scatter difference objective in GTDA, namely, direct GTDA (DGTDA) which also gets rid of parameter tuning. We demonstrate that DGTDA outperforms GTDA in terms of both efficiency and accuracy. In addition, we propose constrained multilinear discriminant analysis (CMDA) that learns the optimal tensor subspace by iteratively maximizing the scatter ratio criterion. We prove both theoretically and experimentally that the value of the scatter ratio criterion in CMDA approaches its extreme value, if it exists, with bounded error, leading to superior and more stable performance in comparison to DATER.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据