4.8 Article

A Combinatorial Solution for Model-Based Image Segmentation and Real-Time Tracking

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2009.79

关键词

Image segmentation; tracking; elastic shape priors; discrete optimization; dynamic programming; minimum ratio cycles; real-time applications

资金

  1. German Research Foundation [CR-250/1-1, CR-250/2-1]

向作者/读者索取更多资源

We propose a combinatorial solution to determine the optimal elastic matching of a deformable template to an image. The central idea is to cast the optimal matching of each template point to a corresponding image pixel as a problem of finding a minimum cost cyclic path in the three-dimensional product space spanned by the template and the input image. We introduce a cost functional associated with each cycle, which consists of three terms: a data fidelity term favoring strong intensity gradients, a shape consistency term favoring similarity of tangent angles of corresponding points, and an elastic penalty for stretching or shrinking. The functional is normalized with respect to the total length to avoid a bias toward shorter curves. Optimization is performed by Lawler's Minimum Ratio Cycle algorithm parallelized on state-of-the-art graphics cards. The algorithm provides the optimal segmentation and point correspondence between template and segmented curve in computation times that are essentially linear in the number of pixels. To the best of our knowledge, this is the only existing globally optimal algorithm for real-time tracking of deformable shapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据