4.8 Article

Order-Preserving Moves for Graph-Cut-Based Optimization

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2009.120

关键词

Energy minimization; graph cuts; max-flow; SVM; geometric class labeling; shape prior

向作者/读者索取更多资源

In the last decade, graph-cut optimization has been popular for a variety of labeling problems. Typically, graph-cut methods are used to incorporate smoothness constraints on a labeling, encouraging most nearby pixels to have equal or similar labels. In addition to smoothness, ordering constraints on labels are also useful. For example, in object segmentation, a pixel with a car wheel label may be prohibited above a pixel with a car roof label. We observe that the commonly used graph-cut alpha-expansion move algorithm is more likely to get stuck in a local minimum when ordering constraints are used. For a certain model with ordering constraints, we develop new graph-cut moves which we call order-preserving. The advantage of order-preserving moves is that they act on all labels simultaneously, unlike alpha-expansion. More importantly, for most labels alpha, the set of alpha-expansion moves is strictly smaller than the set of order-preserving moves. This helps to explain why in practice optimization with order-preserving moves performs significantly better than alpha-expansion in the presence of ordering constraints. We evaluate order-preserving moves for the geometric class scene labeling (introduced by Hoiem et al.) where the goal is to assign each pixel a label such as sky, ground, etc., so ordering constraints arise naturally. In addition, we use order-preserving moves for certain simple shape priors in graph-cut segmentation, which is a novel contribution in itself.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据