4.8 Article

Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2007.70752

关键词

nonrigid structure-from-motion; probabilistic principal components analysis; factor analysis; linear dynamical systems; expectation-maximization

向作者/读者索取更多资源

This paper describes methods for recovering time-varying shape and motion of nonrigid 3D objects from uncalibrated 2D point tracks. For example, given a video recording of a talking person, we would like to estimate the 3D shape of the face at each instant and learn a model of facial deformation. Time-varying shape is modeled as a rigid transformation combined with a nonrigid deformation. Reconstruction is ill-posed if arbitrary deformations are allowed, and thus additional assumptions about deformations are required. We first suggest restricting shapes to lie within a low-dimensional subspace and describe estimation algorithms. However, this restriction alone is insufficient to constrain reconstruction. To address these problems, we propose a reconstruction method using a Probabilistic Principal Components Analysis (PPCA) shape model and an estimation algorithm that simultaneously estimates 3D shape and motion for each instant, learns the PPCA model parameters, and robustly fills-in missing data points. We then extend the model to represent temporal dynamics in object shape, allowing the algorithm to robustly handle severe cases of missing data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据